Acta Crystallographica Section E

## Structure Reports Online <br> ISSN 1600-5368

## Mohammed Bakir* and Ishmael Hassan

Department of Chemistry, University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies

Correspondence e-mail:
mohammed.bakir@uwimona.edu.jm

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in solvent or counterion
$R$ factor $=0.034$
$w R$ factor $=0.080$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## cis-Dicarbonyl(hydroxydi-2-pyridylmethanolato$\left.\kappa^{3} N, O, N^{\prime}\right)($ triphenylphosphine- $\kappa P)$ rhenium (I) dimethyl sulfoxide hemisolvate

The title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})_{2}\right]$-$0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$ or cis-[Re(CO) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpkO}, \mathrm{OH})\right] \cdot 0.5 \mathrm{dmso}(\mathrm{dpk}-$ $\mathrm{O}, \mathrm{OH}$ is hydroxydi-2-pyridylmethanolate and dmso is dimethyl sulfoxide), obtained from a dmso solution of cis$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpk}) \mathrm{Cl}\right] \quad(\mathrm{dpk}$ is di-2-pyridylmethanone), crystallizes in the monoclinic space group $P 2_{1} / c$, with two independent cis- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpkO}, \mathrm{OH})\right]$ complexes and one dmso molecule in the asymmetric unit. These results confirm the facile hydrolysis of $\mathrm{N}, \mathrm{N}$-coordinated di-2-pyridyl methanone to form a hydroxytris(2-pyridyl) methanolato$\kappa^{3} N, O, N^{\prime}$ coordinated anion. The coordinated atoms are in a pseudo-octahedral geometry, with the major distortion from octahedral geometry being due to the constraints associated with the $\kappa^{3} N, O, N^{\prime}$ binding of the hydroxytris(2-pyridyl)methanolate anion. The methyl groups of the dmso molecule show orientational disorder and have an insignificant effect on the overall precision and geometry. The molecular packing shows stacks of molecular units interlocked via a network of classical intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the complexes into pairs, and non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the various stacks.

## Comment

The ligand di-2-pyridylmethanone (dpk) and its oxime and hydrazone derivatives are of interest, in part because of their physicochemical properties, reactivity patterns, and applications in many areas, including catalysis, sensors, pharmaceuticals, microelectronics and others (Bernhardt et al., 2003; Camel, 2003; Crowder et al., 2004; Kepert et al., 2004; Kumagai et al., 2003; Sreekanth et al., 2003; Swearingen et al., 2002; Terra et al., 2002). Upon coordination to a variety of metal atoms, dpk undergoes facile hydrolysis to form a gem-diol, which allows for the expansion of monodentate (di-2-pyridylmethanone- $\kappa^{1} N$ or $-\kappa^{1} O$ ) or bidentate (di-2-pyridylmethanone $-\kappa^{2} N, N^{\prime}$ ) coordination of dpk to tridentate [hydroxytris(2-pyridyl)methanolato- $\kappa^{3} N, O, N^{\prime}$; Bakir \& McKenzie, 1997; Gerber et al., 1995] and tetradentate [tris(2-pyridyl)methandiolato- $\kappa^{4} N, O, N^{\prime}, O$ ] binding (Papaefstathiou et al., 2002). We have been interested in the chemistry of polypyridyl-like compounds of the type $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2} X$, where $X=$ $\mathrm{CO}, \mathrm{C}=\mathrm{N}-\mathrm{OH}$ or $\mathrm{C}=\mathrm{NH}-\mathrm{N} R$, and have reported on the synthesis and spectroscopic, electrochemical and structural properties of a series of dpk derivatives and their metal complexes (Bakir \& McKenzie, 1997; Bakir, Brown \& Johnson, 2004; Bakir, Hassan et al., 2004; Bakir \& Brown, 2003; Bakir et al., 2003; Bakir, 2002a,b,c; Bakir, 2001a,b). Although we have reported on the solid-state structural analysis of the rhenium tricarbonyl complex with hy-droxytris(2-pyridyl)methanolato- $\kappa^{3} N, O, N^{\prime}, f a c-\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{dp}-\right.$

Received 16 November 2004 Accepted 22 November 2004 Online 27 November 2004
$\mathrm{kO}, \mathrm{OH})$ ], to our knowledge there has been no report to date on the solid-state structure of metal dicarbonyl compounds of hydroxydi-2-pyridylmethanolato- $\kappa^{3} N, O, N^{\prime}$ (Bakir, 2002c). In this report, the structure of the title dimethylsulfoxide solvated compound, cis-[ $\left.\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpkO}, \mathrm{OH})\right]$-0.5 dmso , (I), is described and compared with the structures of rhenium complexes with $\alpha$-diimine ligands and hydroxy-di-(2pyridyl)methoxide ( $\mathrm{dpkO}, \mathrm{OH}$ ) and other related compounds.

(I)

When cis-[ $\left.\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpk}) \mathrm{Cl}\right]$ was allowed to stand in dmso at room temperature, yellow crystals of cis$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}, \mathrm{OH}\right)\right] \cdot 0.5 \mathrm{dmso}$, (I), suitable for X-ray analysis were obtained. The facile hydrolysis of $\mathrm{N}, \mathrm{N}$ bidentate dpk in cis- $\left[\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpk}) \mathrm{Cl}\right]$ is similar to that reported for the hydrolysis of $N, N$-coordinated dpk in fac$\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{dpk}) \mathrm{Cl}\right]$ and other metal complexes containing $N, N$-bidentate dpk (Bakir \& McKenzie, 1997; Gerber et al., 1995).

A view of the asymmetric unit of (I) (Figs. 1 and 2) reveals the presence of two cis- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}\right.\right.$,$\mathrm{OH})$ ] molecules along with one solvent molecule (dmso). The coordination about Re is pseudo-octahedral, with two N atoms from the pyridyl rings, two C atoms from the carbonyl groups, one O atom from the methanolate group and a P atom occupying the coordinating sites. The distortion from octahedral geometry in the molecule of (I) is due to the tridentate binding of hydroxydi-2-pyridylmethanolato- $\kappa^{3} N, O, N^{\prime}$ to form a six-membered metallocyclic ring ( $\mathrm{N} 1 / \mathrm{C} 15 / \mathrm{C} 3 / \mathrm{C} 25 / \mathrm{N} 2 / \mathrm{Re}$ ) and two five-membered metallocyclic rings (N1/C15/C3/O3/ Re) fused along the $\mathrm{Re}-\mathrm{O} 3-\mathrm{C} 3$ junction, and is apparent from the $N, N$ and $N, O$ bite angles of hydroxydi-2-pyridylmethanolato- $\kappa^{3} N, O, N$ (Table 1). This is similar to what was reported for the tridentate binding of the hydroxydi-2-pyridylmethanolato- $\kappa^{3} N, O, N^{\prime}$ anion in $f a c-\left[\operatorname{Re}(\mathrm{CO})_{3^{-}}\right.$ $\left(\kappa^{3} N, O, N^{\prime}\right.$-dpkO,OH)], $\left[\operatorname{ReOCl}_{2}\left(\kappa^{3} N, O, N^{\prime}\right.\right.$-dpkO, OH$\left.)\right]$, and other related compounds (Bakir \& McKenzie, 1997; Bakir, 2002 c; Gerber et al., 1995). With the exception of the C2'-$\mathrm{Re}^{\prime}-\mathrm{C}^{\prime}$ bond angle, the bond distances and angles of the coordinated atoms (Table 1) are normal and of the same order as those reported for a variety of compounds containing such bonds (Bakir, 2002c; Bakir, 2001a,b; Gerber et al., 1995, 1993). For example, an $\mathrm{N}-\mathrm{Re}-\mathrm{N}$ bite angle of $81.6(2)^{\circ}, \mathrm{N}-\mathrm{Re}-\mathrm{O}$ bite angles of 74.55 (14) and $75.26(14)^{\circ}$, and an average $\mathrm{C}-$ $\mathrm{Re}-\mathrm{C}$ angle of $90.2(3)^{\circ}$ were observed in fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}, \mathrm{OH}\right)\right]($ Bakir, 2002c).


Figure 1
A view of the asymmetric unit of (I). H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the $20 \%$ probability level.


Figure 2
A drawing of one molecule of the cis- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}-\right.\right.$ dpkO,OH)] complex of (I); the second molecule and the solvent have been omitted.

The methyl groups of the dmso molecule show disorder, which is manifest in or modelled by the presence of extra residual electron density near S 1 , the presence of solvent voids, the splitting of one methyl group into two positions, residual effects of absorption or a series of termination or other factors. Attempts to model the disorder of the dmso (see Experimental) gave best results when the peaks $\sim 1.6 \AA$ from S1 were assigned to one methyl group with an occupancy of $57 \%$ for the major site.

The packing of molecules of (I) shows stacks of cis$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}, \mathrm{OH}\right)\right] \cdot 0.5 \mathrm{dmso}$ molecules interlocked via a network of hydrogen bonds (Fig. 3 and Table 2) and reveals classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds between the methanolate groups of adjacent cis- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}, \mathrm{OH}\right)\right]$ units to form an eight-membered ( $\mathrm{O} 3 / \mathrm{C} 3 / \mathrm{O} 4 / \mathrm{H} 1 / \mathrm{O}^{\prime} / \mathrm{C3}^{\prime} / \mathrm{O} 4^{\prime} / \mathrm{H} 1^{\prime}$ ) ring in a boat conformation, forming cis- $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\kappa^{3} N, O, N^{\prime}\right.\right.$ dpkO,OH)] hydrogen-bonded dimers (Fig. 4). Non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the different stacks. The
distances and angles of the hydrogen bonds are of the same order as those reported for the same types of bonds in fac$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\kappa^{3} N, O, N^{\prime}-\mathrm{dpkO}, \mathrm{OH}\right)\right]$ (Bakir, 2001c). For example, hydrogen-bond parameters of $0.82,1.86,2.679$ (5) $\AA$ and $179^{\circ}$ were reported for the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and parameters of $0.93,2.26,3.183$ (7) $\AA$ and $171^{\circ}$ were observed for the non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Bakir, 2002c).

In conclusion, crystal-growth and structural studies of (I) confirm the facile hydrolysis of coordinated di-2-pyridylmethanone and the sensitivity of the hydrolysed product to its surroundings, as apparent from the incorporation of a solvent dmso molecule in the resulting crystal structure. Structural analysis reveals pseudo-octahedral coordination around Re and pseudo-tetrahedral geometry about $S$, and the presence of a network of hydrogen bonds that may account for the stability of the hydrolysed product.

Due to their convenient synthesis and rich physicochemical properties, together with our continued interest in the development of molecular sensors, the coordination chemistry and sensing behaviour of di-2-pyridylmethanone and its derivatives remain under investigation in our laboratories.

## Experimental

The compound cis-[ $\left.\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpk}) \mathrm{Cl}\right]$ was prepared by refluxing a mixture of di-2-pyridylmethanone, $\left[\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right]$ and $\mathrm{PPh}_{3}$ in dry toluene, as described earlier by Bakir \& McKenzie (1997). Single crystals of (I) were obtained from a dmso solution of cis$\left[\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{dpk}) \mathrm{Cl}\right]$ when allowed to stand at room temperature for several days.

## Crystal data

$\left[\mathrm{Re}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)-\right.$
$\left.\quad(\mathrm{CO})_{2}\right] \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=744.77$
Monoclinic, $P 2_{1} / c$
$a=17.336(2) \AA$
$b=16.5870(19) \AA$
$c=21.125(3) \AA$
$\beta=91.127(10)^{\circ}$
$V=6073.4(13) \AA^{3}$
$Z=8$
$D_{x}=1.629 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 45
$\quad$ reflections
$\theta=1.9-17.6^{\circ}$
$\mu=4.13 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, yellow
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$

## Data collection

Bruker $P 4$ diffractometer
$2 \theta / \omega$ scan
Absorption correction: $\psi$ scan
$\quad(X S C A N S$ in $S H E L X T L ;$ Bruker,
$\quad 1997)$
$T_{\min }=0.152, T_{\max }=0.290$
12608 measured reflections
10614 independent reflections
8772 reflections with $I>2 \sigma(I)$

## Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034\)
\(w R\left(F^{2}\right)=0.080\)
\(S=1.02\)
10614 reflections
751 parameters
H-atom parameters constrained
```

Table 1
Selected geometric parameters $\left(\mathrm{A},{ }^{\circ}\right)$.

| Re1-C1 | 1.871 (5) | $\mathrm{N} 1^{\prime}-\mathrm{C} 11^{\prime}$ | 1.338 (7) |
| :---: | :---: | :---: | :---: |
| Re1-C2 | 1.874 (6) | $\mathrm{C} 15^{\prime}-\mathrm{C} 3^{\prime}$ | 1.525 (7) |
| Re1-O3 | 2.137 (3) | C3'-O4 | 1.395 (6) |
| Re1-N2 | 2.169 (4) | $\mathrm{C} 3^{\prime}-\mathrm{C} 25^{\prime}$ | 1.523 (7) |
| Re1-N1 | 2.200 (4) | $\mathrm{P} 1^{\prime}-\mathrm{C} 41^{\prime}$ | 1.829 (6) |
| Re1-P1 | 2.3662 (14) | C31-C36 | 1.382 (8) |
| O1-C1 | 1.184 (6) | C51-C56 | 1.399 (8) |
| O2-C2 | 1.173 (6) | S1-O5 | 1.471 (5) |
| O3-C3 | 1.398 (6) | S1-C4A | 1.529 (13) |
| N1-C15 | 1.343 (7) | S1-C4 | 1.551 (18) |
| Re1'-C2 ${ }^{\prime}$ | 1.869 (6) | S1-C5 | 1.863 (15) |
| Re1'- $\mathrm{Cl}^{\prime}$ | 1.877 (6) | C36'-C31 | 1.384 (8) |
| Re1 ${ }^{\prime}$ - $\mathrm{O}^{\prime}{ }^{\prime}$ | 2.134 (3) | O4-C3 | 1.391 (6) |
| Re1'- $\mathbf{N}^{\prime}{ }^{\prime}$ | 2.161 (4) | C15-C14 | 1.378 (7) |
| Re1'- $\mathrm{N}^{\prime}{ }^{\prime}$ | 2.204 (4) | C15-C3 | 1.525 (7) |
| $\mathrm{Re} 1^{\prime}-\mathrm{Pl}^{\prime}$ | 2.3756 (15) | C3-C25 | 1.533 (7) |
| $\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}$ | 1.177 (7) | C13-C12 | 1.364 (9) |
| $\mathrm{C1}^{\prime}-\mathrm{O} 1^{\prime}$ | 1.169 (7) | C13-C14 | 1.402 (8) |
| $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$ | 1.388 (6) |  |  |
| C1-Re1-C2 | 89.6 (2) | $\mathrm{O} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 25^{\prime}$ | 113.1 (4) |
| C1-Re1-O3 | 101.30 (19) | $\mathrm{O3}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 15^{\prime}$ | 108.3 (4) |
| C2-Re1-O3 | 167.52 (18) | $\mathrm{O} 4^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 5^{\prime}$ | 107.4 (4) |
| C1-Re1-N2 | 94.8 (2) | $\mathrm{C} 25^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 15^{\prime}$ | 105.6 (4) |
| C1-Re1-N1 | 174.8 (2) | $\mathrm{C} 41^{\prime}-\mathrm{P1}{ }^{\prime}-\mathrm{C} 51^{\prime}$ | 99.0 (3) |
| O3-Re1-N1 | 74.67 (14) | C51-P1-C31 | 102.1 (2) |
| N2-Re1-N1 | 81.04 (15) | C56-C51-C52 | 116.4 (5) |
| $\mathrm{C} 1-\mathrm{Re} 1-\mathrm{P} 1$ | 90.23 (17) | C53-C52-C51 | 122.2 (6) |
| O3-Re1-P1 | 92.69 (10) | O5-S1-C4A | 117.1 (7) |
| $\mathrm{N} 2-\mathrm{Re} 1-\mathrm{P} 1$ | 167.07 (11) | O5-S1-C4 | 120.5 (9) |
| C11-N1-C15 | 118.9 (4) | $\mathrm{C} 4 A-\mathrm{S} 1-\mathrm{C} 4$ | 121.7 (10) |
| C21-N2-C25 | 118.6 (5) | O5-S1-C5 | 103.1 (6) |
| C21-N2-Re1 | 128.6 (4) | $\mathrm{C} 4 A-\mathrm{S} 1-\mathrm{C} 5$ | 88.1 (9) |
| $\mathrm{C} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{C}^{\prime}$ | 86.3 (2) | C4-S1-C5 | 87.2 (11) |
| $\mathrm{C} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{O}^{\prime}$ | 166.67 (19) | O2-C2-Re1 | 175.9 (5) |
| $\mathrm{C} 1^{\prime}-\mathrm{Re}^{\prime}-\mathrm{O}^{\prime}$ | 104.62 (19) | N1-C15-C14 | 122.5 (5) |
| $\mathrm{C} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{N} 2^{\prime}$ | 97.2 (2) | N1-C15-C3 | 112.2 (4) |
| $\mathrm{O}^{\prime}{ }^{\prime}-\mathrm{Re}^{\prime}{ }^{\prime}-\mathrm{N} 2^{\prime}$ | 74.81 (14) | C14-C15-C3 | 125.2 (5) |
| $\mathrm{C} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{N} 1^{\prime}$ | 94.0 (2) | O4-C3-O3 | 114.2 (4) |
| $\mathrm{N} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{N} 1^{\prime}$ | 81.11 (16) | O4-C3-C15 | 108.4 (4) |
| $\mathrm{N} 2^{\prime}-\mathrm{Re} 1^{\prime}-\mathrm{P} 1^{\prime}$ | 168.94 (12) | O3-C3-C15 | 107.9 (4) |
| $\mathrm{O} 2^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{Re} 1^{\prime}$ | 175.7 (5) | O4-C3-C25 | 112.8 (4) |
| $\mathrm{O}^{\prime}-\mathrm{C1}^{\prime}-\mathrm{Re} 1^{\prime}$ | 175.3 (5) | O3-C3-C25 | 107.0 (4) |
| $\mathrm{C} 3^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}-\mathrm{Re} 1^{\prime}$ | 104.4 (3) | C56'-C51'- $\mathrm{C} 52^{\prime}$ | 117.5 (6) |
| $\mathrm{C} 11^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 15^{\prime}$ | 119.5 (5) | C56-C55-C54 | 119.6 (6) |
| $\mathrm{C} 11^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{Re} 1^{\prime}$ | 128.3 (4) | C42'- ${\mathrm{C} 41^{\prime}-\mathrm{C} 46^{\prime}}$ | 118.7 (6) |
| $\mathrm{O}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{O} 4^{\prime}$ | 114.4 (4) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{Re} 1$ | 179.6 (5) |
| $\mathrm{O} 3^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 25^{\prime}$ | 107.6 (4) |  |  |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}^{\prime}-\mathrm{H} 4 \mathrm{O}^{\prime} \cdots \mathrm{O} 3$ | 0.82 | 1.86 | $2.683(5)$ | 175 |
| ${\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots 3^{\prime}}^{\prime}$ | 0.82 | 1.87 | $2.679(5)$ | 167 |
| $\mathrm{C} 22^{\prime}-\mathrm{H} 22^{\prime} \cdots 5^{\mathrm{i}}$ | 0.93 | 2.44 | $3.256(9)$ | 146 |
| ${\mathrm{C} 36-\mathrm{H} 36 \cdots 5^{\text {ii }}}^{\mathrm{ii}}$ | 0.93 | 2.40 | $3.237(8)$ | 151 |
| ${\mathrm{C} 43-\mathrm{H} 43 \cdots 1^{\text {iii }}}^{\mathrm{C} 43^{\prime}-\mathrm{H} 43^{\prime} \cdots \mathrm{O}^{\mathrm{iv}}}$ | 0.93 | 2.57 | $3.365(8)$ | 144 |

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y, 2-z$; (iii) $x, \frac{1}{2}-y, z+\frac{1}{2}$; (iv)
$2-x, 1-y, 2-z$.

The refinement reveals an orientational disorder in the dmso solvent. In the final least-squares cycles with all atoms refined anisotropically, and with two methyl groups assigned to dmso, each at $100 \%$ occupancy, two peaks of 1.43 (4) and 1.09 (4) e $\AA^{-3}$ appeared near S1 and Re1', respectively, and an $R_{1}$ value of 0.035 and a $w R_{2}$ value of 0.087 were observed. This model gave displacement parameters greater than 0.9 for atom C 4 and an $\mathrm{S} 1-\mathrm{C} 4$ bond distance of


Figure 3
A view of the hydrogen bonds in (I) (dashed lines). For clarity, all H atoms except those involved in hydrogen bonding have been omitted. Symmetry codes used to generate equivalent atoms are as given in Table 2.


Figure 4
A view of the classical hydrogen bonds in (I) (dashed lines). For clarity, all H atoms except those involved in hydrogen bonding have been omitted. Symmetry codes used to generate equivalent atoms are as given in Table 2.
less than $1.6 \AA$. Attempts to restrain the $\mathrm{S} 1-\mathrm{C} 4$ bond distance and refine atoms C 4 and C 5 isotropically gave an $R_{1}$ value of 0.036 and a $w R_{2}$ value of 0.092 . This led us to consider a new model, in which atoms C 4 and C 5 and their associated H atoms were eliminated, and a new refinement gave an $R_{1}$ value of 0.039 and a $w R_{2}$ value of 0.10 . The resulting electron-density map shows three peaks near S 1 , with two $\sim 1.6 \AA$ and one $\sim 1.9 \AA$ from $S 1$. The peaks at $\sim 1.6 \AA$ were assigned to C 4 and $\mathrm{C} 4 A$, with an initial site occupancy of $60 \%$ for C 4 and $40 \%$ for $\mathrm{C} 4 A$, and the peak at $\sim 1.84 \AA$ was assigned to C5. The addition of H atoms and refinement with aniostropic parameters for all non- H atoms without any restraint gave an $R_{1}$ value of 0.034 and a $w R_{2}$ value of 0.079 , with $\mathrm{S} 1-\mathrm{C} 4$ and $\mathrm{S} 1-\mathrm{C} 4 A$ bond distances $\sim 0.3 \AA$ shorter than S1-C5. This model gave displacement parameters less than 0.25 for C atoms of the dmso, and only one peak with residual electron density of $\sim 1.04 \mathrm{e}_{\AA^{-3}}$ appeared near $\mathrm{Re} 1^{\prime}$. Attempts to restrain the $\mathrm{S} 1-\mathrm{C} 4$ and $\mathrm{S} 1-\mathrm{C} 4 A$ bonds to $1.8 \AA$ gave an $R_{1}$ value of 0.034 and an $R_{2}$ value of 0.083 . The SQUEEZE algorithm in PLATON (http:// www.cryst.chem.uu.nl/PLATON/p100303.html; Spek, 2003; van der Sluis \& Spek, 1990) was invoked to calculate the solvent-accessible areas and voids and to filter the contribution of the distorted region.

In the absence of dmso, $R_{1}$ and $w R_{2}$ values of 0.072 and 0.182 , respectively, were obtained after the least-squares cycles before application of the SQUEEZE algorithm. After application of the SQUEEZE algorithm, $R_{1}$ and $w R_{2}$ values of 0.0315 and 0.0754 , respectively, were obtained. Although the SQUEEZE model shows improvement in the absence of dmso, this model was not used in the final data analysis because it eliminates the solvent contribution. All H atoms were assigned by assuming idealized geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.96,0.93$ and $0.82 \AA$ for primary $\mathrm{CH}_{3}$, aromatic CH and OH , respectively, and they were treated as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Data collection: $X S C A N S$ in SHELXTL (Bruker, 1997); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X S C A N S$ and PLATON (Spek, 2003); software used to prepare material for publication: $X S C A N S$.

The authors acknowledge Dr Alexander J. Blake (University of Nottingham), Professor Anthony L. Spek (University of Utrecht) and Dr Regine Herbst-Irmer (University of Göttingen) for comments.

## References

Bakir, M. (2001a). Acta Cryst. C57, 1371-1373.
Bakir, M. (2001b). Acta Cryst. C57, 1154-1156.
Bakir, M. (2002a). Eur. J. Inorg. Chem. 2, 481-486.
Bakir, M. (2002b). Inorg. Chim. Acta, 332, 1-6.
Bakir, M. (2002c). Acta Cryst. C58, m74-m76.
Bakir, M., Abdur-Rashid, K. \& Gyles, K. (2003). Spectrochim. Acta A, 59, 2123-2129.
Bakir, M. \& Brown, O. (2003). Inorg. Chim. Acta, 353, 89-98.
Bakir, M., Brown, O. \& Johnson, T. (2004). J. Mol. Struct. 691, 265-272.
Bakir, M., Hassan, I., Johnson, T., Brown, O., Green, O., Gyles, C. \& Coley, M. D. (2004). J. Mol. Struct. 688, 213-222.

Bakir, M. \& McKenzie, J. A. M. (1997). J. Chem. Soc. Dalton Trans. pp. 35713578.

Bernhardt, P. V., Caldwell, L. M., Chaston, T. B., Chin, P. \& Richardson, D. R. (2003). J. Biol. Inorg. Chem. 8, 866-880.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Camel, V. (2003). Spectrochim. Acta B, 58, 1177-1233.
Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. \& Granger, R. M. (2004). Inorg. Chem. 43, 72-78.
Gerber, T. I. A., Bruwer, J., Bandoli, G., Perils, J. \& du Preez, J. G. H. (1995). J. Chem. Soc. Dalton Trans. pp. 2189-2192.
Gerber, T. I. A., Kemp, H. J., du Preez, J. G. H. \& Bandoli, G. (1993). J. Coord. Chem. 28, 329-336.
Kepert, C. M., Deacon, G. B., Sahely, N., Spiccia, L., Fallon, G. D., Skelton, B. W. \& White, A. H. (2004). Inorg. Chem. 43, 2818-2827.

Kumagai, H., Endo, M., Kondo, M., Kawata, S. \& Kitagawa, S. (2003). Coord. Chem. Rev. 237, 197-203.
Papaefstathiou, G. S., Escuer, A., Font-Bardía, M., Spyros, P., Perlepes, S. P., Solans, X. \& Vicente, R. (2002). Polyhedron, 21, 2027-2032.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sluis, P. van der \& Spek, A. L. (1990). Acta Cryst. A46, 194-201.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sreekanth, A., Sivakumar, S. \& Kurup, M. R. P. (2003). J. Mol. Struct. 655, 4758.

Swearingen, J. K., Kaminsky, W. \& West, D. X. (2002). Transition Met. Chem. 27, 724-731.
Terra, L. H. S. A., Guekezian, M., Gaubeur, I., Matos, J. R. \& Suárez-Iha, M. E. V. (2002). Polyhedron, 21, 2375-2380.


[^0]:    (C) 2004 International Union of Crystallography

    Printed in Great Britain - all rights reserved

